In number theory, a Woodall number ( W n) is any natural number of the form
for some natural number n. The first few Woodall numbers are:
- 1, 7, 23, 63, 159, 383, 895, … .
History
Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917,
[.] inspired by James Cullen's earlier study of the similarly defined
.
Woodall primes
Woodall numbers that are also
are called
Woodall primes; the first few exponents
n for which the corresponding Woodall numbers
W n are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... ; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... .
In 1976 Christopher Hooley showed that almost all Cullen numbers are composite number. In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to Keller from Hiromi Suyama, asserting that Hooley's method can be reformulated to show that it works for any sequence of numbers , where a and b are , and in particular, that almost all Woodall numbers are composite.[ ] It is an open problem whether there are infinitely many Woodall primes. , the largest known Woodall prime is 17016602 × 217016602 − 1. It has 5,122,515 digits and was found by Diego Bertolotti in March 2018 in the distributed computing project PrimeGrid.
Restrictions
Starting with
W4 = 63 and
W5 = 159, every sixth Woodall number is
divisible by 3; thus, in order for
W n to be prime, the index
n cannot be congruent to 4 or 5 (modulo 6). Also, for a positive integer
m, the Woodall number
W2 m may be prime only if 2
m +
m is prime. As of January 2019, the only known primes that are both Woodall primes and
Mersenne primes are
W2 =
M3 = 7, and
W512 =
M521.
Divisibility properties
Like Cullen numbers, Woodall numbers have many divisibility properties. For example, if
p is a prime number, then
p divides
- W( p + 1) / 2 if the Jacobi symbol is +1 and
- W(3 p − 1) / 2 if the Jacobi symbol is −1.
Generalization
A
generalized Woodall number base b is defined to be a number of the form
n ×
b n − 1, where
n + 2 >
b; if a prime can be written in this form, it is then called a
generalized Woodall prime.
The smallest value of n such that n × b n − 1 is prime for b = 1, 2, 3, ... are[ List of generalized Woodall primes base 3 to 10000]
- 3, 2, 1, 1, 8, 1, 2, 1, 10, 2, 2, 1, 2, 1, 2, 167, 2, 1, 12, 1, 2, 2, 29028, 1, 2, 3, 10, 2, 26850, 1, 8, 1, 42, 2, 6, 2, 24, 1, 2, 3, 2, 1, 2, 1, 2, 2, 140, 1, 2, 2, 22, 2, 8, 1, 2064, 2, 468, 6, 2, 1, 362, 1, 2, 2, 6, 3, 26, 1, 2, 3, 20, 1, 2, 1, 28, 2, 38, 5, 3024, 1, 2, 81, 858, 1, 2, 3, 2, 8, 60, 1, 2, 2, 10, 5, 2, 7, 182, 1, 17782, 3, ...
, the largest known generalized Woodall prime with base greater than 2 is 2740879 × 322740879 − 1.
See also
Further reading
External links